Grant Deliverables and Reporting Requirements for UTC Grants (November 2016)

EXHIBIT F

UTC Project Information	
Project Title	Discrete Dynamics and Epidemiological Multi-Physics
,	Models for Transportation Applications
University	Embry-Riddle Aeronautical University
Principal Investigator	Sirish Namilae, CoPI – Dahai Liu
PI Contact Information	Aerospace Engineering Department, 600 S Clyde Morris
	Blvd, Daytona Beach, FL 32114
	Email: namilaes@erau.edu, PH: 386-226-6445
Funding Source(s) and	Total - \$149828
Amounts Provided (by each	=DOT-CATM- \$99885 + ERAU (cost share) \$49943
agency or organization)	
Total Project Cost	\$149.828
	\$1 7 5,020
Agency ID or Contract Number	69A3551747125
Start and End Dates	02/01/2020-05/15/2021
	02,01,2020 03,13,2021
Brief Description of	Air transportation is central to the global mobility of
Research Project	goods and people. Elimination or reduction of air travel
	during epidemic emergencies, such as during the 2014
	Ebola outbreak in West Africa, carry considerable
	economic and human costs. Mathematical modeling can
	help in devising strategies to reduce the impact of the
	problem and transportation disruptions. We have used
	social force pedestrian movement models in combination
	with stochastic epidemic models to study the spread of
	Ebola aboard Airplanes, however, extending such models
	to a larger scale has cortain problems. Human movement
	is often guided by discretionary behaviors with respect to
	route and destination choices, intrinsic variability in
	nodestrian speed and inter nodestrian interactions, which
	peuestrian speed and inter-pedestrian interactions, Which
	results in a nign level of uncertainty and requires
	assumptions regarding input. We propose an innovative
	approach to deal with this problem using agent based
	modeling and epidemic modeling.
Describe Implementation of	The project outcome will be a novel data backed multiphysi
Research Outcomes (or why	pedestrian movement and infectious disease spread. The m

Not implemented) Place Any Photos Here	evaluated on air transportation infrastructure to address tra disruptions due to epidemic emergencies.
Impacts/Benefits of Implementation (actual, not anticipated)	Using the multiphysics models we will simulate movement of people through two international airports and analyze the following:
	 What are the hotspots in airports with respect to infectious disease spread?
	 Can the changes to layouts and policies alter pedestrian movement and contacts patterns and reduce disease spread?
Web Links Reports Project Website 	Reports and slides will be submitted on project completion

